Preliminary Exercise
Sobel Filters

a) Write the Sobel_x and Sobel_y filters
b) Show a numerical example of how Sobel filters detect edges
c) What operation is needed before applying Sobel filters?
d) What problems can you get into in the previous operation? Show a numerical example
e) Applying the Sobel filters, we obtain the Dx_image and Dy_image. How can we create an ‘only edge’ image?
General overview of Neural Network and Tensorflow up to now
What’s a Neural Network?

• Biological Inspiration

• An approximation to make them work

• Neurons, connections, activation functions, weights and bias
Dimension of the Weights

• Blackboard examples
The key ideas behind a network

• Forward and Backward step

• Gradient Descent

• Partial derivation w.r.t. weights variables

• Steps and Epochs
Regression vs. Classification (1/3)

• Classification is the task of predicting a discrete class label.

• Regression is the task of predicting a continuous quantity.
Regression vs. Classification (2/3)

• A classification algorithm may predict a continuous value, but the continuous value is in the form of a probability for a class label.

• A regression algorithm may predict a discrete value, but the discrete value in the form of an integer quantity.
Classification predictions can be evaluated using accuracy, whereas regression predictions cannot.

Regression predictions can be evaluated using root mean squared error, whereas classification predictions cannot.
Base elements of a Network

tf.Variable(value, name="exampleVar")
tf.constant(value, name="exampleConst")
tf.placeholder(dtype=tf.int32, size=(), name="scalarPlaceholder")

Lots of operations:
tf.transpose(), tf.reduce_mean() and etc.
TF.NN and TF.Layer

• Tensorflow.nn offers elements for your network. If the component needs a weight and/or bias vector, you need to create the actual tf.Variable()

 e.g. tf.nn.batch_normalization()
 tf.nn.conv2d(input, filters,....)

• Tensorflow.layer offers a tool to make your life easier. Weights and bias are automatically managed. Save and restore works on them as a single variable.

 e.g. tf.layer.conv2d(input, #filters, filter_size, ...)
Manual Implementation - basic setting for MNIST

```python
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

a0 = tf.placeholder(tf.float32, [None, 784])

y = tf.placeholder(tf.float32, [None, 10])

eta = tf.constant(0.5)
```
numNodi_middle = 30

w1 = tf.Variable(tf.truncated_normal([784, numNodi_middle]))
b1 = tf.Variable(tf.truncated_normal([1, numNodi_middle]))
w2 = tf.Variable(tf.truncated_normal([numNodi_middle, 10]))
b2 = tf.Variable(tf.truncated_normal([1, 10]))
Manual Implementation- ACTIVATION FUNCTION

SIGMOID ACTIVATION FUNCTION

```python
def sigmoid_f(x):
    return tf.div(tf.constant(1.0), tf.add(tf.constant(1.0), tf.exp(tf.negative(x))))
```

DERIVATIVE OF THE SIGMOID

```python
def d_sig(x):
    return tf.multiply(sigmoid_f(x), tf.subtract(tf.constant(1.0), sigmoid_f(x)))
```
Manual Implementation - FORWARD PROPAGATION

• #Primo Layer
 • $z_1 = \text{tf.add(tf.matmul(a0, w1), b1)}$
 • $a_1 = \text{sigmoid}_f(z_1)$

• #Secondo Layer
 • $z_2 = \text{tf.add(tf.matmul(a1, w2), b2)}$
 • $a_2 = \text{sigmoid}_f(z_2)$
Manual Implementation - CHAIN RULE (1/2)

diff = tf.subtract(a2, y)

d_z2 = tf.multiply(diff, d_sig(z2))
d_b2 = d_z2
d_w2 = tf.matmul(tf.transpose(a1), d_z2)
Manual Implementation - CHAIN RULE (2/2)

d_a1 = tf.matmul(d_z2, tf.transpose(w2))

d_z1 = tf.multiply(d_a1, d_sig(z1))

d_b1 = d_z1

d_w1 = tf.matmul(tf.transpose(a0), d_z1)
Manual Implementation

step = [
 tf.assign(w1, tf.subtract(w1, tf.multiply(eta, d_w1))),
 tf.assign(b1, tf.subtract(b1, tf.multiply(eta,
 tf.reduce_mean(d_b1, axis=[0])))),
 tf.assign(w2, tf.subtract(w2, tf.multiply(eta, d_w2))),
 tf.assign(b2, tf.subtract(b2, tf.multiply(eta,
 tf.reduce_mean(d_b2, axis=[0]))))
]
Manual Implementation

acct_mat = tf.equal(tf.argmax(a2, 1), tf.argmax(y,1))
acct_res = tf.reduce_sum(tf.cast(acct_mat, tf.float32))

s = tf.InteractiveSession()
s.run(tf.global_variables_initializer())
totRange= 10000
for i in range(totRange):
 batch_x, batch_y = mnist.train.next_batch(10)
 s.run(step, feed_dict = {a0: batch_x, y: batch_y})
An Important Issue

- Vanishing Gradient
- Exploding Gradient
Regularization

- Regularization in the loss function
- Dropout
Convolutional NN
General concepts

• Wrap up everything the course presented up to now

• Powerful tool to work with images

• The most used network along with RNN (next lecture)

• Convolution can be 1D, 2D, 3D, ...

• SPARSE NEURONS CONNECTIONS
Convolution net comes in two steps

- Every convolution layer is followed by a Pooling:
 - Max
 - Average
 - Many others

- The whole convolutional part of the network is usually followed by a fully connected to offer an actual classification
Key concept: Meaningful Dimensions

- Conv2d layers have 3d weights and outputs:
 - Spatial information kept (w.r.t. Width and Height)
 - Filter informations kept (a slice w.r.t. Depth)
Stride recall

• It generally appears in two components that state how much the filter moves in each direction (x, y)
• In signal processing, it is assumed to take the form (1, 1)
• An increase of the stride values implies a decrease of the output dimension
• Particular cases are stride (1, 1) and non overlapping stride (filter_x_dim, filter_y_dim)
• In tensorflow, the stride has 4 components: it considers also channel and batch movement directions (but it is usually set to 1)
Key role of Padding

• In tensorflow, we have: padding=‘VALID’ and padding=‘SAME’ as parameters of conv2d function

• `padding=’VALID’` = no padding applied (dimensionality reduction or 1x1 filters case)

• `padding=’SAME’` = zero padding applied

• Keep in mind that you can applied the tf.pad() function to decide to use other types of padding
Padding in practice (1/2)

```python
tf.pad(
tensor,
paddings,
mode='CONSTANT',
name=None,
constant_values=0
)
```
Padding in practice (2/2)

```python
t = tf.constant([[1, 2, 3], [4, 5, 6]])
paddings = tf.constant([[1, 1], [2, 2]])

tf.pad(t, paddings, "CONSTANT")
# [[0, 0, 0, 0, 0, 0, 0],
#  [0, 0, 1, 2, 3, 0, 0],
#  [0, 0, 4, 5, 6, 0, 0],
#  [0, 0, 0, 0, 0, 0, 0]]

tf.pad(t, paddings, "REFLECT")
# [[6, 5, 4, 5, 6, 5, 4],
#  [3, 2, 1, 2, 3, 2, 1],
#  [6, 5, 4, 5, 6, 5, 4],
#  [3, 2, 1, 2, 3, 2, 1]]

tf.pad(t, paddings, "SYMMETRIC")
# [[2, 1, 1, 2, 3, 3, 2],
#  [2, 1, 1, 2, 3, 3, 2],
#  [5, 4, 4, 5, 6, 6, 5],
#  [5, 4, 4, 5, 6, 6, 5]]
```
Semi-Manual Implementation - Libraries

```python
%matplotlib inline
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
from sklearn.metrics import confusion_matrix
import time
from datetime import timedelta
import math
```
from tensorflow.examples.tutorials.mnist import input_data

data = input_data.read_data_sets("MNIST_data/", one_hot=True)
Semi-Manual Implementation - Placeholders

```python
x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
x_image = tf.reshape(x, [-1, 28, 28, 1])
y_true = tf.placeholder(tf.float32, shape=[None, 10], name='y_true')
y_true_cls = tf.argmax(y_true, axis=1)
```
with tf.name_scope("conv_1"):
 weights_1 = tf.Variable(tf.truncated_normal(shape=[5,5,1,16], stddev=0.05))
 biases_1 = tf.Variable(tf.constant(0.05, shape=[16]))
 layer_1 = tf.nn.conv2d(input=x_image, filter=weights_1, strides=[1,1,1,1], padding='SAME')
 layer_1 += biases_1
 layer_1 = tf.nn.max_pool(value=layer_1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
Semi-Manual Implementation - Printing the First layer

In Jupyter:
layer_1

Output:
<tf.Tensor 'conv_1/MaxPool:0' shape=(?, 14, 14, 16) dtype=float32>
with tf.name_scope("conv_2"):
 weights_2 = tf.Variable(tf.truncated_normal(shape=[5,5,16,36],
 stddev=0.05))
 biases_2 = tf.Variable(tf.constant(0.05,shape=[36]))
 layer_2 = tf.nn.conv2d(input = layer_1,filter =
 weights_2,strides=[1,1,1,1],padding='SAME')
 layer_2 += biases_2
 layer_2 = tf.nn.max_pool(value=layer_2, ksize=[1,2,2,1],strides=[1,2,2,1],
 padding='SAME')
Semi-Manual Implementation - Flattening needed for a FC layer

```python
with tf.name_scope("flatten"):
    layer_shape = layer_2.get_shape()
    num_features = layer_shape[1:4].num_elements()
    layer_flat = tf.reshape(layer_2, [-1, num_features])
```
with tf.name_scope("fc_1"):
 weights_3 = tf.Variable(tf.truncated_normal([num_features, 128]))
 biases_3 = tf.Variable(tf.constant(0.05, shape=[128]))
 layer_3 = tf.add(tf.matmul(layer_flat, weights_3), biases_3)
 layer_3 = tf.nn.relu(layer_3)
Semi-Manual Implementation - Fully connected two

```python
with tf.name_scope("fc_2"):
    weights_4 = tf.Variable(tf.truncated_normal([128, 10]))
    biases_4 = tf.Variable(tf.constant(0.05, shape=[10]))
    layer_4 = tf.add(tf.matmul(layer_3, weights_4), biases_4)
```
Semi-Manual Implementation - Towards the loss and accuracy (1/2)

```python
y_pred = tf.nn.softmax(layer_4)

y_pred_cls = tf.argmax(y_pred, axis=1)

cross_entropy =
    tf.nn.softmax_cross_entropy_with_logits(logits=layer_4, labels=y_true)
```
Semi-Manual Implementation - Towards the loss and accuracy (2/2)

cost = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)

correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
Semi-Manual Implementation - Pre-Training settings

```python
session = tf.Session()
session.run(tf.global_variables_initializer())
batch_size = 64
num_iterations = 1
```
start_time = time.time()

for i in range(num_iterations):
 print(i)
 x_batch, y_true_batch = data.train.next_batch(batch_size)

 feed_dict_train = {x: x_batch,
 y_true: y_true_batch}
Semi-Manual Implementation - Training (2/2)

```python
session.run(optimizer, feed_dict=feed_dict_train)
if i % 100 == 0:
    acc = session.run(accuracy, feed_dict=feed_dict_train)
    print("Optimization Iteration: ", str(i), "Training Accuracy: ", acc)

end_time = time.time()
time_dif = end_time - start_time
```